Clustering of Metal Atoms in Organic Media

Vi. Solvated Metal Atoms Used for the Low Temperature Preparation of Highly Dispersed Zero Valent Metal Catalysts1

KENNETH J. KLABUNDE,* DANIEL RALSTON,* ROBERT ZOELLNER,* HIDESHI HATTORI,[†] AND YASUTAKA TANAKA[†]

* *Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202 7 Department of Chemistry, Hokkaido University, Sapporo, Japan*

Received March 15, 1978; revised July 27, 1978

Metal atoms dispersed in weakly compiexing solvents yield "solvated metal atoms." Catalyst supports have been permeated with varying amounts of these solutions. Warmup of the solution-support slurry allows metal atoms and/or small crystallites of metal to de deposited in the catalyst support. This method serves as a new way of preparing zero-valent highly dispersed catalysts at low temperatures in the absence of H_2O or O_2 , and no H_2 reduction step is used.

Optimum percentage of metal dispersions have been determined to be about 0.4% Ni/Al₂O₂. Heat treatment of the catalysts causes an increase in activity, apparently due to desorption of adsorbed materials, up to the point of gross sintering at 6OO"C, at which point activity falls off drastically.

INTRODUCTION

Recently we reported that deposition of metal atoms (vapors), into low temperature weakly complexing organic media (such as toluene, tetrahydrofuran, pentanc, or similar organics) sometimes allows the formation of pseudo-stable metal atom solutions (solvated metal atoms) (2). Warming of these solutions to $>-80^{\circ}$ C causes the formation of very small metal crystallites which have shown high rcactivity in catalysis and in other interesting chemical processes (1) . We also reported preliminarily on the deposition of small metal crystallites in catalyst supports by allowing the metal atom solution to permeate the support material followed by

¹ Part V, Ref. (1) .

slow warming, subsequent decomposition of the weak M-solvent complex, and metal deposition (2).

The potential of this method for preparation of very highly dispersed zero-valent metal catalysts, perhaps atomically dispersed, is high for several reasons: (a) a host of different organic dispersants are available for each metal studied (as opposed to normal organometallic deposition procedures), (b) we have shown that catalysts of varying activities and selectivities can be prepared with the same metal simply by varying the organic dispersant $(1, 2)$. We do not yet know if this is due to the formation of varying crystal faces, or due to varying degrees of adsorption of organic fragments, (c) the catalystx can be prepared at very low temperature

in the absence of water, (d) large scale processes appear feasible (3) .

EXPERIMENTAL METHODS

Equipment and experimental details have been reported previously (1) , for preparation of Ni-solvent slurries and catalysts. Very similar procedures were used here but with Al_2O_3 or SiO_2 supports present, and either Xi, Pd, Pt, or Ag vaporized.

Typical Example of a Catalyst Preparation: Preparation of 6.8% Ni/Al_2O_3

A piece of Ni shot was loaded into a Sylvania Emissive Products Integral W- $Al₂O₃$ crucible (CS-1008), weighed, and placed in position in a metal atom-vapor reactor (4) .

Harshaw Al-0102P Al₂O₃ was calcined in air for 3 hr at 600°C using a Haskins tube furnace, after which 3.00 g of the $Al₂O₃$ powder was placed in the bottom of a metal vapor (atom) reactor, along with a magnetic stirring bar. The reactor was then sealed and slowly (pumpdown of several min is necessary to avoid splatter of Al_2O_3 with degassing) evacuated down to 1×10^{-4} Torr.

After pumpdown (about $6-8$ hr) the crucible was degassed at a dull red heat, the reactor cooled in liquid N_2 , and degassed purified toluene (1) vapor inletted. After coating the reactor walls with about 5 ml toluene, the crucible was warmed to a white heat and Ni vaporization was begun. Nickel vapor and toluene were cocondensed for 1 hr and 50 min yielding a brown-yellow matrix at -196° C. A total of 0.2179 g Ni (3.71 mg/atoms) and 25 ml toluene (235 mmoles) were inletted. After completion of the reaction the reactor was isolated from vacuum and the liquid N_2 Dewar was removed. The matrix slowly warmed and mehed. Upon meltdown the dark brown solution permeated the Al_2O_3 support while vigorous magnetic stirring was commenced. During the warmup period of about 1 hr the Ni deposited in the Al_2O_3 (deposition at about -50° C), and a black Ni-toluene/ Al_2O_3 slurry was obtained. The slurry was removed under N_2 flush via syringe using a wide 3 ft Teflon needle, and placed in Sehlenk airless glassware (5). The colorless excess toluene was removed by syringe, and the Ni-toluene/ Al_2O_3 catalyst

-

was dried under vacuum at. room temperature for several hours at 10^{-3} Torr. About. 90% recovery of Ni vaporized and Al_2O_3 originally loaded is realized. The dry powder was handled under nitrogen in a Vacuum Atmospheres inert atmosphere box $(<5$ ppm $O₂)$.

X-Ray Powder Sintering Studies

The Ni or Ag catalysts were loaded into 0.5 mm capillary tubes under inert atmosphere after being previously heat treated on the vacuum line at the desired temperature for 0.5 hr with 1 hr warmup, waxed, and later flame sealed. Then the capillaries were individually exposed to X-rays for 6 hr using a Siemann's powder camera on a conventional X-ray diffraction apparatus powered by a Noreleo generator using a Cu source with Ni filter to obtain $CuK\alpha$ radiation using 48 kV and 20 mA. When Ni bands were observable, the width of the 111 line was carefully measured, and crystallite size calculations were carried out by normal methods (6) .

Thermal Decomposition of Materials from Ni -Toluene/ Al_2O_3 Catalyst

The dry Ni-toluene/ Al_2O_3 catalyst was weighed under N_2 into a small glass vessel with provision for attachment to a vacuum line. About. 0.50 g was used for each trial. The vessel was evacuated and then heated to the desired temperature using a 1 hr heating period and 0.5 hr at each temperature employing a Haskins tube furnace equipped with a thermocouple for monitoring temperature. As materials were dcsorbed they were collected in a -196° C trap. This trap was not open to the pumping system so that non-cocondensibles were saved as well. All products were analyzed by VPC. Noncondensibles were analyzed using a 5 Å molecular sieve column with He carrier gas at a flow of 60 ml/min. Since the thermal conductivities of H_2 and He are similar, the amount of H_2 present was determined indirectly. A CH, external standard was used to determine amounts of all other noncondensibles, thereby requiring that the amount unaccounted for in relation to the total millimoles determined by ideal gas calculations be the millimoles of H_2 . CondensibIc materials were measured first for total amount by pressure and volume measurements, then separated as to volatile and nonvolatile components with pressure and volume measurements also being made on each of these. The less volatile components were isolated in a $CO₂$ -isopropanol slush trap and the volatiles were trapped in a liquid N_2 trap. The less volatile components were then stored in a sample bulb with 10 to 15 μ of mesitylenc added to form a solution. If two phases formed in the solution (indicative of H_2O presence) the two were separated and analyzed separately. The solution was analyzed using a 5 ft Carbowax column on a Varian Aerograph VPC with a 60 ml/min He flow. The volatile materials were also analyzed, but by use of a VPC system hooked into the vacuum line with isolating stopcocks. An HMPA column with 60 ml/min He flow was used for separation of the volatile materials.

$Desorption ~of ~Organics ~from ~Ni-Toluene/$ Al_2O_3 Catalyst by Treatment with Hydrogen

The above procedures were employed here also except that at 25 and 250° C, 120 mm of $H₂$ was inletted and left in contact with the catalyst over a 4 hr period at each temperature. During this time a -196 °C trap was present to hold any desorbed condensible materials. Analysis of condcnsiblcs and less volabilcs were carried out in the same way as for pyrolysis.

Static High Pressure Hydrogenation Rate Studies on Toluene (typical example)

In an inert atmospheres box, a 128 ml Hastelloy C pressure vessel (Parr Instrument Co.) was charged with a stirring bar, 4.3% Ni-toluene/Al₂O₃ catalyst (0.4570 g) and 188 mmole of deoxygenated toluene. The vessel was then scaled, removed from the box and pressurized to 50 psig with H_2 , flushed, and finally pressurized to 250 psig. The apparatus was connected to a ballast tank to maintain constant pressure, and the bomb was heated with constant vigorous magnetic stirring at 160°C for 16 hr. The vessel was then cooled, depressurized, and the contents were examined by VPC using a 5 ft Carbowax column with 60 ml/min He ffow showing methylcyclohcxano as product (0.003 mmole min⁻¹/g of Ni), and no benzene or cyclohexane generated.

Closed Recirculation Reactor Hydrogenation and Isomerization Studies on 1 -Butene and 1,3-Butadiene

See Ref. (1).

Al_2O_3 Used

Powdered Al-0102P Al_2O_3 (Harshaw, surface area = 140-150 m²/g), which was calcined prior to use at 600°C in air for 3 hr.

SiOz Used

Powdered $SiO₂$ (Cab-O-Sil HS-5 from Cabot Corp.) was calcined prior to use at 600°C in air for 3 hr.

RESULTS AND DISCUSSION

We report here some recent results concerning these catalyst preparation procedures for depositing Ni, Pd, Pt, Ag, on Al_2O_3 or SiO_2 , and in particular catalytic work and electron microscopy work on $Ni/Al₂O₃$.

In a typical proccdurc, in the bottom of a metal atom reactor (4) is placed 1 to 10 g of calcined (600°C) Al_2O_3 or SiO_2 powder or pellets. Then metal vapor (ca. 0.5 g) is deposited with a high excess of solvent (ca. 50-fold excess) at -196° C. The dark matrix is then allowed to melt and flow down onto the support while under vacuum so that the M atom solution permeates the pores of the support. Then with vigorous stirring the slurry is allowed to slowly warm from the melting temperature of the solvent to 25°C. Metal deposits in the support usually about -40 to -90° C. The gray slurry is then removed under N_2 usually by syringe using a 3 ft Teflon needle, and moved to Schlenk airless glassware where the solvent is removed under vacuum.

1. Metals and Solvents Employed for Catalyst Preparations

Table 1 lists the catalysts we have prepared with qualitative comments. Note that toluene, trifluoromethylbenzene and THF all work well for Ni dispersion. However, for Ag dispersion only THF was acceptable, but even this was not entirely satisfactory. For Pd and Pt toluene works reasonably well. Pentane however did not yield a well-dispersed Ni catalyst.

Qualitatively we can say that low melting arene solvents work best for Ni, Pd, and Pt. because relatively stable $(>-80^{\circ}$ stability) π -arcne complexes form with these metals, yielding good homogeneous metal atom solutions on meltdown. For Ag, however, more polar ether solvents are needed since the Ag-etherate appears to bc more thermally stable than $Ag-\pi$ -arene complexes.

As expected, higher metal loadings yield larger metal crystallites in the final catalyst. For normal loadings of 0.01 to 9% Ni, Ni crystallites are well below 40 A, as determined by X-ray powder patterns. More exact determinations of crystallite sizes have not yet been possible since with these high dispersions, the $X-ray$ studies show only very broad lines.

b. Electron Microscopy Studies

A 17% Ni-toluene/Al₂O₃ sample was examined by selected area diffraction in

Metal/support ^a	Dispersing b solvent	$\%$ Ni Loading	Color	Approx. cryst. size (\hat{A}) by X ray ^{c}	Dispersion of Ni (visual)
Ni/Al ₂ O ₃	$C_6H_3CH_3$	0.01	Faint gray		Excellent
	$C_6H_3CH_3$	0.32	Light gray	$<$ 40	Excellent
	$C_6H_5CH_3$	0.63	Gray		Excellent
	$\rm{C_6H_5CH_3}$	2.2	Gray		Excellent
	$C_6H_3CH_3$	2.9	Gray		Excellent
	$CaHaCHa$	3.1	Gray		Excellent
	$C_6H_5CH_3$	4.3	Gray	${<}40^{\circ}$	Excellent
	$C_6H_5CH_3$	5.6	Gray		Excellent
	$C_6H_5CH_3$	6.8	Gray	$<$ 40	Excellent
	$C_6H_5CH_3$	9.0	Black	$<$ 40	Excellent
	$CaHaCHa$	17	Black		Good
	$C_6H_5CH_3$	23	Black	$40 - 100$	Good
	$n\text{-C}_{5}H_{12}$	16	Pepper ^e		Poor
	$C_6H_3CF_3$	19	Black		Excellent
	THF	17	Black		Good
Ni/SiO ₂	$C_6H_3CH_3$	1.7	Gray		Good
	$C_6H_3CH_3$	2.0	Gray		Good
	$C_6H_5CH_3$	2.6	Gray		Good
Ag/Al ₂ O ₃	$C_6H_5CH_3$	0.8	Light gray		Fair
	$C_6H_3CH_3$	1.0	Light gray		Fair
	$C_6H_3CH_3$	1.9	Light gray		Fair
Ag/SiO ₂	$C_6H_5CH_3$	2.4	Light grav		Fair
	$C_6H_3CH_3$	4.6	Gray		Fair
	$C_6H_5CH_3$	13	Gray		Poor
Pd/Al_2O_3	$CnH0CH3$	4.0	Grav		Good
	$C_6H_5CH_3$	~ 0.3	Light gray		Good

TABLE 1 Catalysts Prepared

^{*a*} cf. Experimental Section for details on supports used.

^b Generally a \sim 50:1 excess of solvent to Ni was employed. Experimentally this ratio can be easily varied as desired up to $\sim 500:1$.

For some samples, approximate crystallite sizes have been determined by the method of Klug and Alexander (6) .

 d 40–100 Å after pyrolysis at 500°C.

 \cdot Metal particles interspersed with Al_2O_3 particles.

conjunction with transmission electron microscopy to determine particle size and shape. Figure 1 shows two photographs, one of the supporting Al_2O_3 and the other of a Ni particle/ Al_2O_3 both at magnification $\times 37,000$. Note the spherical nature of the Ni particles which are agglomerated into a very porous Ni skeleton. This finding is similar to the spherical particles formed directly from a Ni-toluene solution without Al_2O_3 support (2). However, in the Nitoluene supported case the diameter of the individual spherical particles is approximately 0.03 μ m (300 Å) while in the unsupported Ni-toluene case they are about 0.7 μ m. The crystallite sizes in both cases are quite small in the neighborhood of 30 to 80 Å. It is interesting to note that the overall length of the individual Ni particle in Fig. 1 is about 0.8 μ m (8000 Å), essentially the same as the spherical particles observed in the unsupported

FIG. 1. Selected area imaging and TEM on Ni-toluene/Al₂O₃ and Al₂O₃. Electron micrograph with X-ray flourescence attachment: can pick out nickel or Al_2O_3 ($\times 37,000$). (a) Ni particle; (b) $Al₂O₃$.

toluene matrix (about 1:50 ratio initially) A_2O_3 (or loose agglomerations of these), upon warming allows crystallization to or, if no support is present agglomerate crystallite sizes of 30 to SO A, and these further to about SO00 A spheres which then further agglomerate to spherical particles arc stable at room temperature,

case (2). It would appear that the Xi- of about 300 A. These can be trapped on

3. Materials Adsorbed on the Ni-Toluene/ Al_2O_3 Catalyst

During the catalyst preparation in toluene, significant amounts of organics become strongly bound to the Ni particles and Al_2O_3 , and remain bound even after pumpdown to less than 10^{-3} Torr at 25° C. Figure 2 summarizes the products described upon pyrolysis of the resultant powders at various temperatures for 4.3% Nitoluene/ Al_2O_3 . At the lower temperatures organics were desorbed, such as toluene, and small amounts of benzene and methyleyelohexane. Water evolution began at 100° C and continued throughout the pyrolysis, with the bulk of water released in the 200 to 300°C range. Carbon dioxide evolution was continuous throughout, whereas hydrogen evolution began at 200°C and continued up to 600°C. Small amounts of methane were released at 300 and 400°C, but no other small hydrocarbons.

Our work on unsupported active catalysts has indicated that the organic material adsorbed is oxidized to $CO₂$ in an extremely facile manner over the catalyst. Since this active nickel is a very good oxygen seavenger, which then is converted to $CO₂$, some $CO₂$ is always observed even under the most stringent airless conditions. In

FIG. 2. CO₂, H₂O, H₂, and organics released upon pyrolysis of a Ni-toluene/Al₂O₃ catalyst. ^a Normal heating rate \approx 1[°]/min but at faster rates slightly more CH₄ is observed. These are amounts released from one 4.3% Ni/Al₂O₃ sample heated progressively and samples taken off at the temperatures indicated.

the case of these supported catalysts, we believe similar oxidation of adsorbed carbon species occurs as the catalyst is heated. Some oxygen may also come from the $Al₂O₃$ support. The efficiency of this oxidation to $CO₂$ is striking in that only COz is observed, no CO, alcohols or other intermediate products. In addition, Ni is necessary for this process since toluenctreated Al_2O_3 samples (blank experiments) yielded 10-fold less $CO₂$ on heating.

Figure 2 also indicates that some hy-

drogen is released upon pyrolysis. This probably indicates that carbonaceous species are formed on the surface of the Ni (organic $\stackrel{\Delta}{\rightarrow}$ H₂ + carbon). This process must only occur on Ni (not Al_2O_3) since toluene treated Al_2O_3 samples (blank experiments) indicated no formation of H_2 upon heating.

Methane formation occurs in comparable amounts whether Ni is present on the Al_2O_3 (blank experiments) or not.

Attempts to correlate catalytic activity

with release of organics, H_2O , or CO_2 (cf. Catalytic Behavior section and Fig. 5) are not possible in a quantitative way. However, it is evident that large amounts of materials are desorbed in the temperature range where catalytic activities greatly increase. Thus, we believe loss of $CO₂$, H_2O , and H_2 with probable subsequent formation of some surface carbonaceous species is necessary for formation of the most active microcrystalline catalytic sites.

When the Ni-toluene/ Al_2O_3 was heated

 400_r 380 360 110 င္ပ 100 90 $\times 10^{-7}$ 군
이 80 mmol of compound released of catalyst 70 60 σ 50 ਨੂੰ
ਉ 40 30 methylcyclohexane $CO₂$ 20 methylcyclohexane c_2^2 methylcyclohexane $\ddot{\theta}$ $\overline{0}$ 7.5 unknown unknown 5 £ 2.5 ₹ \overline{O} R.T. 25° C 250° C overnight hydrogenation hydrogenation at 121 mm H_2 at 121 mm H_2 pumping

FIG. 3. CO₂, H₂O₂ and organics driven off by treatment of Ni-toluene/Al₂O₃ with H₂ at 25 and 250°C. " Done using 3.1% Ni-toluenc/Al₂O₃. " Analyzed volumetrically; all others determined by VPC analysis.

FIG. 4. Activities of Ni-toluene/Al₂O₃ in toluene hydrogenation with variance in Ni loading.

in the presence of excess hydrogen, organics, $CO₂$, and $H₂O$ were again released (cf. Fig. 3). At lower temperatures most of the organics were released including, as expected, significant amounts of reduced products. At higher temperatures H_2O was the predominant product released, especially at 250°C where apparently surface oxygen is readily converted to $H₂O$.

4. Sintering Properties

For a 4.3% Ni-toluene/Al₂O₃ sample heating cycles were carried out and the resultant samples were examined by X-ray powder techniques. No detection on any

crystallinity was observed until the samples had been pyrolyzed at 500°C or higher, Some sintering obviously could have oecurred below this temperature, but certainly not gross sintering. These results indicate, as expected, the $Al₂O₃$ support served to stabilize the small crystallites toward sintering, since we know that unsupported Ni-toluene sinters about 300°C (1).

5. Catalytic Behavior

Hydrogenation and olefin isomerization reactions were studied employing these Ni catalysts, Comparisons were made for activity per gram of Ni for different Ni loadings, and for different catalyst heat treatment temperatures.

Ni Loading Variations. Rates of hydrogenation of toluene to mcthylcyclohexanc at various Ni loadings are plotted in Fig. 4. Note that the more highly dispersed catalysts allowed effective use of the Ni, as would be expected, and these data may reflect a simple Xi surface area effect. Very low Ni loadings, whcrc higher dispersions must be important', did not show much activity however. Thus, note the abnormally low activity for a Ni loading of 0.01% . This indicates that there is a maximum activity at about 0.4% Ni. We do not have adequate data to allow clear explanation of these data. It does seem evident, however, that an optimum dispersion reflects an optimum crystallite or cluster size. It may be that at very low loadings the Ni clusters are so small that their support interaction becomes overwhelming, which affects catalytic activity.

Assuming an Al_2O_3 surface area of 150 m^2/g , a 0.4% Ni loading would give only

FIG. 5. Activity of 4.3% Ni-toluene/Al₂O₃ for toluene hydrogenation with variance in catalyst preheat treatment temperatures.

FIG. 6. Isomerization and hydrogenation of 1-butene over 6.8% Ni on Al_2O_3 (0.03969 g).

nickel (using Ni-Ni bond lengths as in order to learn more about the $Ni-Al₂O₃$ 2.49 \AA ⁸) (7). Since Ni is less catalytically interactions in the toluene system (what efficient above 0.4% loading, it would types of sites on Al_2O_3 are used up where appear that additional Ni simply serves Ni deposits, for example). to increase the cluster sizes, or is deposited Heat treatment temperature variations.

 \sim

about 4.2% coverage as a monolayer of not be effective. Further work is needed

in areas of the Al₂O₃ where catalysis can Portions of a 4.3% Ni-toluene (Al₂O₃)

 $a_0 = b$ utane formed after 1,3-butadiene was completely consumed; $X = b$ utane was formed when 1,3-butadiene remained; Δ = intermediate between 0 and X.

catalyst were heat treated under dynamic activity with catalyst preheating treatvacuum at different temperatures, and the ments up to 400°C. Then, a sharp increase resultant catalysts were used in tolucne of activity was observed at 500°C followed hydrogenation studies. The purpose of by a drastic loss of activity at 600^oC prethese experiments was to: (a) determine treatment temperature. The falloff in at what' temperature the Ni clusters activity correlates with gross sintering sintercd, and how this affected their that occurs over 500°C. The steady increase activity in the toluence hydrogenation, and in activity with increase in pretreatment (b) to monitor the materials desorbcd temperature probably is due to desorption during the heat treatment procedure, and of materials (cf. Figs. $2 \text{ vs } 5$), with release determine if the desorption process corre- of more active sites for the catalytic act. lated with hydrogenation activity. The More work is needed to make clear actually results of these studies turned out to be what crystalline changes are occurring on quite revealing, and are summarized in organics desorption. Shown below is a Fig. 5. The data clearly indicate a sub- possible representation of how more active stantial and progressive increase in catalyst sites might be generated on heating.

New microcrystalline faces? $R = \text{organic}$ of catalyst activity, selectivity and activity

6. Catalyst Xelectivities

solvent or fragment molecule, $CO₂$, or $H₂O$; studies of olefin and dienes hydrogenation * = active site. were also carried out. A recirculation flow reactor was employed (1) for hydrogenation of I-butene to butane, and 1,3- Although we have employed toluene butadiene to butane. It was found that hydrogenation rates as a general measure 6.8% Ni-toluene/Al₂O₂ was a highly active

FIG. 7. Hydrogenation of 1,3-butadiene over 6.8% Ni on Al₂O₃ (0.06548 g).

conversion, more active than Ni-toluene $A_1 \Omega_3$ definitely affects the hydrogenation itself (1). However, this Ni-toluene/Al₂O₃ mechanism. On the other hand, the Nicatalyst was ineffective as 1-butene iso- toluene/ Al_2O_3 catalyst behaved quite simimerization catalyst in the absence of H_2 lar to Ni-toluene (1) after H_2 introduction, (cf. Fig. 5). This is in contrast to our and 1-butene was extensively isomerized

catalyst/g Ni for the 1-butene \rightarrow butane itself (1) (cf. Table 2), and shows that findings with Ni-toluene as a catalyst by as well as hydrogenated during the experiment time (Fig. 5). Thus, the Al_2O_3 hinders vapor-solvent codeposition technique. For

 6.8% Ni-toluene/Al₂O₃ occurred in a fashion of quickly. Thermal desorption of bound very similar to that occurring over Xi- molecules (possibly with concomitant fortoluene (1) . Thus, extensive hydrogenation mation of new Ni crystallites) increases to butenes, especially 1-butcne, took place catalyst activity steadily until Ni sintering before butane formation. The diene was occurs. The Ni-toluene/Al₂O₃ catalyst only hydrogenated partially on the Ni shows similar selcctivities compared with surface, released, and then later 1-butene an unsupported Ni-tolucne catalyst (1) . preferentially converted to butane (cf. Particle appearances are also similar for

work, the Ni-toluene/Al₂O₃ and Ni-toluene smaller when dispersed on $\rm Al_2O_3$ however. catalysts behaved similarly, but in both Crystallite sizes are in the 30-80 A range. cases greater reactivity/g Ni was observed with the Al_2O_3 dispersed catalyst. ACKNOWLEDGMENTS

Comparison of different percentage of Ni We are extremely grateful to Professor Galen loadings were also carried out, and the Stucky and Dr. Ian Ward of the University of results are shown on Table 2. These data results are shown on Table 2. These data Illinois for transmission electron microscopy experi-
ments and helpful discussions. Also, we thank reemphasize that Ni-toluene/Al₂O₃ is a poorer 1-butene isomerization catalyst than Ni-toluenc without support. However, straight hydrogenation of 1-butene to Science-Foundation for financial support in the form
hutane is somewhat more Ni efficient when of a general research grant (CHE-7402713) and an butane is somewhat more Ni efficient when of a general research grant (CHE-7402713) and Λ 1.0 supported Hydrogenetians of 1.2 NSF Energy Related Traineeship (to D.R.). Al_2O_3 supported. Hydrogenations of 1,3butadiene (Fig. 7) are very similar in rate, REFERENCES and both the supported and nonsupported catalysts allow first only partial hydro-
 $\frac{1}{2}$. Klabunde, K. J., Davis, S. C., Hattori, H., and catalysts allow first only partial hydro-
Tanaka N. J. Catal 54, 354 (1070) genation (to butenes, mainly 1-butene) followed by butene conversion to butane. Possible reasons for such behavior in these (1976) .
systems has been discussed proviously and β . Reichelt, W., Angew. Chem., Int. Ed. Engl. 14, 218 systems has been discussed previously, and $\frac{3. \text{ Recenter, W.,} \text{ Anglew. Chem., Int. Ed. Eng. 14, 218}}{(1975)$; also private discussions with Timms, probably involve competition for active sites by adsorbed organics (from toluene) with 1-butene or 1,3-butadiene, or the formation of very characteristic active sites $\begin{array}{r} Res. 8, 393 \text{ (1975)}; Timms, P. L., in "Cryo-
when the Nil-toluene catalyst system is
chemistry" (M. Moskovits and G. Ozin, Eds.), \end{array}$ when the Ni-toluene catalyst system is chemistry" (M. Moskovits and G. Ozin, Eds.), when the Company of $\frac{1}{N}$, Eds., Eds. formed (1) . Work is in progress which will hopefully clarify the system further.

Highly dispersed Ni, Pd, Pt, $Ag-Al₂O₃$, $SiO₂$ catalysts can be prepared by the metal

isomerization in the absence of H_z , but not N_I/Al_2O_3 , catalyst activities increase with in the presence of H₂. increasing dispersion until a loading of Hydrogenation of 1,3-butadienc over about 0.4% is reached where activity falls Fig. 6). these catalysts showing the particles to be In both the 1-butene and 1,3-butadiene tiny spheres. These spheres are much

Professor Kozo Tanabe of Hokkaido University for helpful discussions and preliminary study of some of these catalysts. We are grateful to the National

- Tanaka, Y., J. Catal. 54, 254 (1978).
- 2. Klabunde, K. J., Efner, H. F., Murdock, T. O., and Ropple, R., J. Amer. Chem. Soc. 98, 1021
- P. L., and Wilks, A.
- 4. Klabunde, K. J., Angew. Chem., Znt. Ed. Engl. 14, 287 (1975); Klabunde, K. J., Acts. Chem.
- 5. Shriver, D., "Manipulation of Air Sensitive Compounds." McGraw-Hill, New York, 1969.
- 6. Klug, H. P., and Alexander, L. E., "X-Ray CONCLUSIONS Diffraction Procedures," 2nd ed., pp. 295, 687-704. Wiley, New York, 1974.
	- 7. Handbook of Chemistry and Physics, 56th ed., p. F-212. CRC Press, Cleveland, Ohio, 1975-76.